skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Larson, Matthew C"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available January 21, 2026
  2. Semicrystalline poly(l-lactide) (PLLA) is a leading biosourced, compostable alternative to conventional plastics but lacks sufficient toughness for many applications. Chain alignment via uniaxial stretching may be used to toughen PLLA but often creates anisotropic materials that are tough in the machine direction (MD) but brittle in the transverse direction (TD). This work reports uniaxially stretched films of PLLA blended with 3 wt % poly(ethylene oxide)-block-poly(butylene oxide) (PEO-PBO), which exhibit as much as a 5-fold increase in toughness in the TD compared to similarly stretched neat PLLA films─and elucidates the impact of PEO–PBO particles on the relationship between stretching, crystallization behavior, and resultant mechanical properties. Faster stretching rates were correlated with higher yield stress and a greater degree of crystallite alignment in the PEO–PBO/PLLA blends. This trend highlights the synergistic relationship between crystallinity and chain alignment and suggests a competing mechanism of heterogeneous crystallite nucleation around PEO–PBO particles. Importantly, PEO–PBO/PLLA exhibited a TD elongation at break of 36%, five times greater than the value of similarly stretched neat PLLA and even greater than the corresponding MD value of either material. Taken together, these findings demonstrate that uniaxial stretching of PEO–PBO/PLLA blends produces biaxially tough films, with the fastest stretching conditions producing the greatest enhancement in TD toughness. 
    more » « less